Search results for "screen printed electrodes"

showing 3 items of 3 documents

Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes (SPEs)

2014

Oxidized Single-Wall Carbon Nanohorns (o-SWCNHs) were used, for the first time, to assemble chemically modified Screen Printed Electrodes (SPEs) selective towards the electrochemical detection of Epinephrine (Ep), in the presence of Serotonine-5-HT (S-5HT), Dopamine (DA), Nor-Epineprhine (Nor-Ep), Ascorbic Acid (AA), Acetaminophen (Ac) and Uric Acid (UA). The Ep neurotransmitter was detected by using Differential Pulse Voltammetry (DPV), in a wide linear range of concentration (2-2500 μM) with high sensitivity (55.77 A M(-1) cm(-2)), very good reproducibility (RSD% ranging from 2 to 10 for different SPEs), short response time for each measurement (only 2s) and low detection of limit (LOD=0.…

Neurotransmitters; Screen Printed Electrodes (SPEs); Selective detection; SWCNHs; Biosensing Techniques; Electrochemical Techniques; Electrodes; Epinephrine; Limit of Detection; Nanostructures; Oxidation-Reduction; Reproducibility of Results; Biophysics; Biomedical Engineering; Biotechnology; Electrochemistry; Medicine (all)NanostructureEpinephrineScreen Printed Electrodes (SPEs)ElectrodeBiophysicsAnalytical chemistryBiomedical EngineeringReproducibility of ResultBiosensing TechniquesElectrochemistryNanomaterialsSWCNHs; Screen Printed Electrodes (SPEs); Neurotransmitters; Selective detectionBiosensing TechniqueSelective detectionLimit of DetectionElectrochemistrySWCNHSettore CHIM/01 - Chimica AnaliticaNeurotransmitterElectrodesDetection limitSWCNHsReproducibilityElectrochemical TechniqueChemistryMedicine (all)Reproducibility of ResultsGeneral MedicineElectrochemical TechniquesNeurotransmittersAscorbic acidNanostructuresLinear rangeBiophysicElectrodeDifferential pulse voltammetryOxidation-ReductionNuclear chemistryBiotechnology
researchProduct

The Importance of Developing Electrochemical Sensors Based on Molecularly Imprinted Polymers for a Rapid Detection of Antioxidants

2021

International audience; This review aims to pin out the importance of developing a technique for rapid detection of antioxidants, based on molecular imprinting techniques. It covers three major areas that have made great progress over the years in the field of research, namely: antioxidants characterization, molecular imprinting and electrochemistry, alone or combined. It also reveals the importance of bringing these three areas together for a good evaluation of antioxidants in a simple or complex medium, based on selectivity and specificity. Although numerous studies have associated antioxidants with molecular imprinting, or antioxidants with electrochemistry, but even electrochemistry wit…

0301 basic medicinesol-gel techniquePhysiologyClinical Biochemistryelectrochemical sensorNanotechnologyReviewBiochemistryRapid detection03 medical and health sciences0302 clinical medicine[SDV.IDA]Life Sciences [q-bio]/Food engineering[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular Biologyscreen printed electrodesChemistrylcsh:RM1-950Molecularly imprinted polymerCell Biologyradical polymerizationcyclic voltammetrylcsh:Therapeutics. Pharmacologyantioxidants030104 developmental biologyindustrial applicationsmolecular imprintingMolecular imprinting030217 neurology & neurosurgerydifferential pulse voltammetryAntioxidants
researchProduct

Sensor Properties of Pristine and Functionalized Carbon Nanohorns

2016

Nanodispersions of pristine single-wall carbon nanohorns (i.e., p-SWCNHs) and oxidized-SWCNHs (i.e.; o-SWCNHs) were used to modify screen printed electrode (SPE). p-SWCNHs and o-SWCNHs were fully characterized by using several analytical techniques, as: HR-TEM (High Resolution-Transmission Electron Microscopy), FE-SEM/EDX (Field Emission-Scanning Electron Microscopy/Energy Dispersive X-ray Analysis), Raman spectroscopy, thermogravimetric analysis, differential thermal analysis (DTA), and the Brunauer-Emmett-Teller (BET) method. The chemically modified SPEs were also characterized with Cyclic Voltammetry (CV), using several different electro-active targets. In all cases, p-SWCNHs showed bett…

Carbon NanohornThermogravimetric analysisScreen Printed ElectrodesMaterials scienceAnalytical chemistrychemistry.chemical_element02 engineering and technologyGlassy carbon010402 general chemistryElectrochemistry01 natural sciencesCarbon NanohornsAnalytical Chemistrysymbols.namesakeDifferential thermal analysisElectrochemistrySettore CHIM/01 - Chimica AnaliticaSingle-WallCarbon Nanohorns; Screen Printed Electrodes; Single-Wall; Analytical Chemistry; ElectrochemistryScreen Printed Electrode021001 nanoscience & nanotechnology0104 chemical scienceschemistryElectrodesymbolsCyclic voltammetry0210 nano-technologyRaman spectroscopyCarbonElectroanalysis
researchProduct